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Blume-Capel model approximated by a sequence of generalized Husimi trees

James L. Monroe
Department of Physics, Penn State University, Beaver Campus, 100 University Drive, Monaca, Pennsylvania 15061-2799

~Received 10 September 2001; published 14 January 2002!

We generalize a systematic approximation method presented by the present author earlier@Monroe, Phys.
Rev. E 64, 016126~2001!#, and which was applied to Ising models with spin one-half. The generalization
allows one to consider higher spin systems. In particular we consider the spin-one, Blume-Capel model on a
square lattice. We obtain an approximation to the phase diagram of the system that we show is as or more
accurate than any presently available. This we are able to do with a rather modest effort thereby illustrating the
fact that the method gives one rather accurate results without requiring too extensive computer calculations.
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I. INTRODUCTION

Recently we introduced@1# an approximation method tha
may be thought of as a generalization of the Bethe lat
approximation. Rather than a Bethe lattice we deal wit
generalized Husimi tree, where a collection of sites and
appropriate interactions connecting these sites are the b
building blocks of the graphical structure rather than the t
sites and a single nearest neighbor interaction that consti
the basic building block of the Bethe lattice. By constructi
a sequence of these generalized Husimi trees with larger
larger basic building blocks we can obtain better and be
approximations to the lattice spin system being studi
achieving, for example, better and better approximations
the phase diagram of the system. Furthermore, in Ref.@1# we
used various extrapolation methods to further improve
approximations obtained. For the standard ferromagne
nearest neighbor, Ising model on the square lattice our
estimate of the critical temperature was within 0.003% of
exact value. We also found accurate results for the crit
line of phase transitions of the antiferromagnetic case of
model in the magnetic field-temperature plane.

As we noted in@1# the method is general enough that
could be applied to a very large variety of lattice spin s
tems. One avenue of generalization of what was presente
@1# is to higher spin systems where, for example, the s
variable can take on more than two values as is the case
the standard Ising spin models where the spin value is61.
One such system is the Blume-Capel model@2,3#. Approxi-
mations of this system’s phase diagram have been obta
by a large variety of methods. A partial list includes mea
field theory @2,3#, renormalization group@4#, Monte Carlo
renormalization group analysis@5#, finite size scaling and the
transfer matrix@6#, finite size scaling of the partition functio
zeros@7#, mean-field renormalization group@8#, and a micro-
canonical Monte Carlo study@9#. The system has received
lot of attention due to the fact that as a part of the ph
diagram one has a tricritical point@10#. We approximate this
system with a sequence of only three generalized Husimi
approximations. We use these three approximations as i
into the BST extrapolation method@11# to obtain what we
believe is a very accurate overall approximation of this s
tem on the square lattice.

In the following section, Sec. II, we define the Blum
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Capel model and present the approximation scheme b
used. Section III contains our results along with comparis
to a number of results from previous approximations. T
final section contains some concluding remarks.

II. BASIC METHOD

The standard Blume-Capel model is a lattice spin sys
where the spin variables is allowed to take on the values61
and 0. The Hamiltonian of the system is

H52J(
^ i , j &

s is j2h(
i

s i1D(
i

s i
2, ~1!

where the first sum is over all nearest neighbor pairs and
later two sums are over all spin variables comprising
system. Here we will consider only the system on the squ
lattice and also our results, along with most other resu
using other approximation methods, will be only for the ca
where h50. Then the phase diagram in theD-T plane,
whereT is the temperature, consists of a critical line of co
tinuous phase transitions in the region where2`<D,D t
and a connecting line of first order phase transitions forD t
,D<2. When D5D t one is at the tricritical point. It is
worth noting that forD→2` one has the standard Isin
model where the exact critical temperature is known.

As stated in the introduction we approximate such a s
tem with a generalized Husimi tree and we are intereste
the behavior of sites deep within the tree just as in the Be
approximation where one is concerned with the behavior o
central site and not all sites making up the Cayley tree.
can determine the behavior of our central sites by a recur
method. As an example we consider our lowest level
proximation. In this case we have a four site basic build
block with the sites on the corner of a square and four nea
neighbor interactions connecting the sites. If we consider
four sites as our total system we can take one of our site
be the base site and can find expressions forL1

1 , L1
0, and

L1
2 that denote respectively the part of the partition functi

for the four site system where the spin variable on the b
site is1, 0, and2, denoted by the superscript. The subscr
1 denotes the fact that we consider this four site system
our first generation system. To get the second generation
tem we attach a first generation system at three of the cor
©2002 The American Physical Society09-1
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JAMES L. MONROE PHYSICAL REVIEW E 65 026109
of a new four site, basic building block as shown in Fig.
One can then obtain expressions forL2

1 , L2
0, andL2

2 where
again the superscripts denote the value of the spin vari
on the base site. These expressions can be written as
tions of L1

1 , L1
0, andL1

2 as well asebJ andebD whereb
[1/kT. One can continue with this building process in
obvious way to produce third generation, fourth generati
etc. graphical structures. For thenth generation tree one ca
expressLn

1 , Ln
0, and Ln

2 , the three parts of the partitio
function for the nth generation tree, in terms ofLn21

1 ,
Ln21

0 , Ln21
2 , ebJ, andebD.

Thus one obtains a three-dimensional, discrete dynam
system and the behavior of the central sites is determine
the fixed points, two cycles, etc. that occur for this syste
Attracting fixed points, two cycles, etc., will be of intere
since we want to take the thermodynamic limit, i.e.,n→`.
Specifically for annth generation system the thermal avera
of the spin variable on the root site, i.e., the magnetization
the root site, is

^s i&n5
Ln

12Ln
2

Ln
11Ln

01Ln
2 , ~2!

where we have denoted the root site as thei th site. If an
attracting fixed point exists, as is often the case, then
magnetization of this root site is in the thermodynamic lim
determined by the value of the fixed point the system
attracted to.

Alternatively the magnetization of the root site of the sy
tem can be written as

^s i&n5
xn2yn

xn111yn
, ~3!

where xn[Ln
1/Ln

0 and yn[Ln
2/Ln

0 thereby reducing the
system to a two-dimensional, discrete dynamical system
volving

xn5 f ~ebJ,ebD,xn21 ,yn21!, yn5g~ebJ,ebD,xn21 ,yn21!.
~4!

FIG. 1. The second generation branch for the first level appr
mation of the square lattice system. Circles indicate the connec
points.
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It is this system that is actually used in determining the
havior of the system. We have not written out the expli
expressions for the functionsf and g as they are rathe
lengthy and not particularly illuminating. Nevertheless t
expressions can be found rather easily due to the small n
ber of configurations involved in the computation ofL1

1 ,
L1

0, andL1
2 .

Our higher level approximations involving larger bas
building blocks~see Fig. 2! also involve situations where
building block is connected to another at more than one s
If one makes connections in this manner, e.g., involving t
sites at a time as done in the second level approximation~see
Fig. 3!, then for the any spin system where the spins can t
on the values61, and zero system one will have an 8, (32

21), dimensional system. In general if a building block
connected to another through a connection involvingp sites
then one will have a 3p21 dimensional system governin
the behavior of the generalized Husimi tree. This is to
contrasted with the standard Ising model spin case studie
@1# where the dimension of the discrete dynamical syst
goes as 2p21. The larger the number of allowed spin valu
the more rapid the increase in the dimensionality of the
cursive maps governing the behavior of the system
hence in the computational complexity encountered. For
reason we have only gone to three levels of approxima
for the Blume-Capel model whereas we had five levels
approximations for the Ising systems of Ref.@1#. Neverthe-
less as we show in the following section in general the
curacy of our approximations generally matches those
tained by other methods.

i-
n

FIG. 2. The basic building blocks or equivalently the first ge
eration branch for the second level approximation~a! and the third
level approximation~b! of the square lattice system.

FIG. 3. The second generation branch for the second level
proximation of the square lattice system.
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To obtain our most accurate results we use, for a givenD,
the critical temperature found from each of our three lev
of approximation as input into an extrapolation proced
developed by Bulirsch and Stoer@11# and used in various
statistical mechanical applications by Henkel and co-work
@12,13#. We have selected this method over various ot
approaches used in@1# as it gave the best results for the Isin
spin systems looked at there. As in@1# having a sequence o
ever improving approximations of the critical temperatu
such as described above allows one to use various extr
lation methods to obtain an improved final approximation
the critical temperature. Using a finite size scalinglike a
proach one can write

Tc~L !5Tc* 1aL2v11bL2v21cL2v31¯ , ~5!

where Tc* is the critical temperature for the lattice bein
approximated,Tc(L) is the critical temperature for theLth
level approximation and where 0,v1,v2,v3,¯ . The
BST method allows one to construct a table of extrapola
For L51, 2, 3 we have

Tc,0
1

Tc,1
1

Tc,0
2 Tc,2

1

Tc,1
2

Tc,0
3

~6!

and theTe,q
n are computed from

Tc,21
n 50, ~7!

Tc,0
n 5Tc~n!, ~8!

TABLE I. Critical temperatures for each of the three levels
approximation used.

D Tc(1) Tc(2) Tc(3)

24.0 2.551 100 2.388 530 2.320 361
22.0 2.360 477 2.216 211 2.155 746
0.0 1.997 236 1.875 236 1.824 143
0.2 1.943 525 1.824 058 1.774 016
0.4 1.884 739 1.767 896 1.718 942
0.6 1.819 919 1.705 815 1.657 986
0.8 1.747 725 1.636 518 1.589 871
1.0 1.666 213 1.558 118 1.512 731
1.2 1.572 302 1.467 665 1.423 663
1.4 1.460 585 1.360 030 1.317 644
1.6 1.319 560 1.224 563 1.184 362
1.7 1.229 384 1.138 670 1.100 157
1.8 1.112 097 1.029 125 0.993 653
1.9 0.901 329 0.856 306 0.832 459
1.96 0.688 039 0.654 504 0.643 483
1.98 0.625 302 0.584 099 0.570 376
1.99 0.585 940 0.535 213 0.521 051
02610
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Tc,m
n 5Tc,m21

n11 1~Tc,m21
n11 2Tc,m21

n !

3F S n

n1mD vS 12
Tcm21

n11 2Tc,m21
n

Tc,m21
n11 2Tc,m22

n11 D 21G21

, ~9!

wherem>1 andv is a free parameter.~The superscriptv is
unfortunately missing in Eq.~15! of Ref. @1#!. Henkel and
Patkos@12# were the first to use the algorithm in the area
critical phenomena. Later Henkel and Schutz@13# examined
the characteristics of this algorithm in a number of settin
The choice ofv in any particular application can be bot
problematic and beneficial. This was one of the aspects
the algorithm discussed in@1,13#. We will describe our
choices forv in the following section.

III. RESULTS

In Table I we present the results of our three levels
approximation. In particular, for each of the three levels
approximation used we have listed the critical temperatu
Tc(L), for a large set of values ofD. In Table II we list our
critical temperature estimates after using the BST meth
As stated in the preceding sectionv is a free parameter. We
have listed our results for two different values ofv. The
values ofv used were chosen based on the following. Fir
for D→2` we know we have the standard Ising model a
for the square lattice one knows the exact critical tempe
ture. Hence we can use this as a reference point. We vav
when using the critical temperature values,Tc(L) for L51,
2, and 3, for the Ising case and choosev such that it gives
Onsager’s exact critical temperature value. One then finds
four figure accuracy,v50.9405. As a second reference poi
one has the special case whereD50. TheD50 case is just
the standard spin-one Ising model and has been studied b

TABLE II. Critical temperatures using the BST extrapolatio
method and comparison with results based on alternate approa

D Tc with
v50.9405

Tc with
v50.9496

Tc from
Ref. @9#

Tc from
Ref. @6#

24.0 2.1445 2.1459
22.0 1.9998 2.0011
0.0 1.6925 1.6936 1.7151 1.695
0.2 1.6450 1.6461 1.6648
0.4 1.5927 1.5938 1.612 381
0.6 1.5346 1.5356 1.5579
0.8 1.4695 1.4705 1.4935
1.0 1.3954 1.3964 1.4137 1.398
1.2 1.3098 1.3107 1.3194
1.4 1.2077 1.2086 1.2098
1.6 1.0796 1.0804 1.0759
1.7 0.9994 1.0003
1.8 0.9002 0.9052 0.8806
1.9 0.7495 0.7504
1.96 0.6206 0.6208 0.6324
1.98 0.5417 0.5418
1.99 0.4947 0.4949 0.550
9-3
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JAMES L. MONROE PHYSICAL REVIEW E 65 026109
extremely thorough and intensive finite size scaling appro
@14# as well as an equally intensive low temperatu
series expansion approach@15,16# resulting in estimates
of the critical temperature of 1.693 55760.000 020 and
1.693 558 360.000 002 5, respectively. Using this as a se
ond reference point and our three estimates of the crit
temperature we find we want to setv50.9496 to get a match
between our BST extrapolation result and the best estim
from finite size scaling and series expansions. We report B
extrapolation values for both these values ofv in Table II as
well as estimates ofTc found by Beale@6# and Care@9#. Note
that while the results usingv50.9496 are always larger tha
those found usingv50.9405 the difference between the tw
results is typically very small and increases asD→2`. For
D524, where the difference is greatest, the difference
0.065% while forD524, it is 0.018%.

In Table II along with our results we have presented
results of Care@9# and Beale@6# that we believe are the mos
accurate available except for special cases such as in thD
50 case mentioned above. Comparisons seen in Tab
indicate the accuracy of our results appears to match or b
that of the other two methods presented there except per
in the area aroundD52. For D50 using the value ofv, v
50.9405, chosen because it gives a correct BST extrap
tion whenD→2`, we haveTc51.6925 while from Ref.@9#
one has 1.7151 and for Ref.@6# one has 1.695. Our resu
differs from the extremely accurate results for this spec
case of references@14–16# by approximately 0.062% while
that of reference differs by 1.27% and that of Ref.@6# by
0.085%. Additionally the more recent result of Xavieret al.
@18# based on conformal invariance and finite size scaling
the special case ofD50 is Tc51.681(5) that is also les
accurate than our result.~Only two Tc are reported in@18#
for the spin-one case and, therefore, we have not inclu
their results in Table II.! Based on the above withv
50.9405 in the region ofD from 2` to 0 our results have an
accuracy of 0.06% or better.

For the case wherev50.9496 our results forD50 match
those of@14–16# and using this value ofv for D→2` our
results differ from the exact Onsager result by 0.08%. Ba
on this forD aroundD50 our results should have an acc
racy significantly greater than 0.08%. Overall our results
both values ofv used in the BST extrapolation method a
very close to those of Refs.@6,9# indicating overall good
quantitative agreement regarding the phase diagram base
all three approaches. The only place where this is not tru
in the region whereD approaches the value of 2 and th
value of Tc approaches 0. Our results in this region diff
from those of Refs.@6,9# by approximately 20.0% at, fo
example,D51.99.

Besides determining the critical temperature one is in
ested in the type of phase transition that occurs. For e
level of approximation there is, beginning withD52`, a
range ofD values where one obtains a continuous transit
but as expected for a large enough value ofD one obtains a
first order phase transition. The point at which this crosso
occurs is the tricritical point denoted by (D t ,Tt). In each
successive level of approximation we obtain a more accu
approximation to this point. The tricritical point for the firs
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second, and third level of approximation are~1.906 75,
0.8684!, ~1.923 95, 0.7758!, and~1.932 79, 0.734 78!, respec-
tively. Here again we use the BST extrapolation method
obtain our best approximation but this time we use it on b
the D sequence andT sequence for our twov values to
obtain the location of the tricritical point forv50.9405 to be
~1.9622, 0.6233! and forv50.9496 to be~1.9619, 0.6233!.
This is to be compared with the values of (1.969660.01,
0.596960.0008), (1.96560.001, 0.61060.005), (1.9655
60.015, 0.60916.003), and~1.967, 0.604! from, respec-
tively, Refs.@9,6,5,7#.

It is worth contrasting the behavior of the fixed points th
result in the continuous phase transition region with the fi
order phase transition region. In the region where one ha
continuous transition there is for high temperatures a sin
positive, real-valued fixed point that is attracting and th
corresponds to the case of zero magnetization. As the t
perature is lowered the stability of this fixed point, i.e., bas
on standard dynamical systems theory the maximum eig
value of the Jacobian of the map evaluated at the fixed p
value, increases to a point where the maximum eigenvalu
1. This is then a neutral fixed point. Lowering the tempe
ture still further causes a bifurcation of the original fixe
point resulting in the creation of two new positive, rea
valued, fixed points. These two new fixed points are attra
ing and correspond to positive and negative values for
magnetization given by Eq.~3! if dealing with the first level
approximation or similar equations for higher level appro
mations. Since the value of the magnetization depends on
fixed point values the system is attracted to, as illustrated
Eq. ~3! for the first level approximation, and the value of th
fixed point the system is attracted to varies continuously
the temperature is lowered the phase transition is continu

This is in contrast to the situation where a first ord
phase transition occurs. Here as before at high temperat
there is a single, positive, real-valued fixed point that
stable~attracting! and corresponds to zero magnetization.
the temperature is lowered again the stability of this fix
point decreases, however, before becoming a neutral fi
point two new, positive, real-valued fixed points are crea
~corresponding to positive and negative magnetizations! and
these fixed points are also stable or attracting. At this po
there are then three attracting fixed points and which fix
point the system is attracted to depends on ones appro
One can take a strict dynamical system’s approach and a
the boundary condition, which are the values assigned tox0
andy0 in Eq. ~4! if one is dealing with the first level approxi
mation, to determine which attracting fixed point the syst
is attracted to. However, as we have shown@17# the better
criteria, a criteria that for other systems has been show
agree with results based on selecting the phase corresp
ing to the minimum free energy the more standard statist
mechanics approach, is to simply have the system go to
more stable fixed point. That is to the fixed point having t
smallest value for the maximum eigenvalue of the Jacob
of the map evaluated at the fixed point value. In this case
system jumps from the fixed point value corresponding
zero magnetization to a very different fixed point corr
sponding to nonzero magnetization as the temperatur
9-4
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BLUME-CAPEL MODEL APPROXIMATED BY A . . . PHYSICAL REVIEW E65 026109
lowered. Since the value of the one fixed point does
move continuously into the value of the other as the temp
ture is decreased this results in the discontinuity of the m
netization and a first order phase transition.

IV. CONCLUSIONS

In the above we have shown the systematic approxima
presented in@1# and applied to spin one-half, Ising mod
systems there can be generalized to higher spin system
the case of higher spin systems the dimension of the dyna
cal system increases more rapidly and, therefore, one
not be able to go to as high a level of approximation as w
the spin one-half case. Nevertheless using the Blume-C
model as an example we have shown that even with o
three levels of approximation and the BST extrapolat
l
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method one can obtain accurate numerical results. Since
method depends only on the spin taking on discrete va
one could besides investigating even higher spin syst
such as the spin-3/2 case that was the main system u
consideration in@18# one could add addition interaction
such as next nearest neighbor, biquadratic interactions
are generally included in the generalization of the Blum
Capel model known as the Blume-Emery-Griffiths model,
multisite interactions.
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